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Background 

Bacillus subtilis is the most studied Gram-positive bacteria and it is the second-best 

characterized bacterium, only after Escherichia coli. B. subtilis has been widely used 

in industrial applications, including the synthesis of antibiotics, enzymes, and vitamins. 

The tremendous amount of omics and physiological data available for B. subtilis 

allowed reconstructing one of the first bacterial genome-scale metabolic models (M-

models)1. M-models accurately predict metabolic responses to nutrient levels and gene-

knockouts, however enzyme production costs and protein secretion simulations are 

beyond their scope.  

A new generation of computational models was recently conceived by linking gene 

expression mechanisms to metabolic reactions2. The models of metabolism and gene 

expression (ME-models) leave protein production profiles as variables that depend on 

a source genome sequence associated with metabolic reaction fluxes with variable 

biosynthetic costs. ME-models can also simulate stress conditions that involve shifts in 

gene expression or biomass composition. Here, we describe the reconstruction and 

validation of the first ME-model of B. subtilis, iJT964-ME. This model achieved higher 

performance scores on the prediction of gene essentiality as compared to the M-model. 

We successfully validated the model by integrating physiological and omics data 

associated with gene expression responses to ethanol and salt stress, unraveling a 

hidden tryptophan mechanism that it is upregulated under stress conditions. We also 

used iJT964-ME to identified key metabolic pathways that permitted the increase in 

amylase production. All in all, we illustrate the potential of iJT964-ME in the study of 

proteomic response to stress and the optimization of protein production. 

 

Methods 

Model reconstruction. Reconstruction was performed in Python 3.6, using the 

reconstruction packages cobrapy 0.5.4 3 and COBRAme 4. Models were solved using 

the package SOLVEme 5. In brief, every reaction in a template core metabolic network 
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(M-model) is coupled with the enzyme's consumption that catalyzes it. 

Gene essentiality analysis. Single gene knockouts were modeled by closing their 

respective translation reactions. Genes were deemed essential when the single 

knockouts resulted in a growth rate of zero. Results were validated with a list of 

essential genes reported by Juhas et al. 6 for B. subtilis and EcoCyc 7 for E. coli. 

Modeling flux distributions under stress. Ethanol is a small polar molecule that can 

readily diffuse through the cell membrane. Therefore, ethanol uptake was modeled with 

no enzymatic coupling. As opposed to ethanol, salt is transported through the membrane 

by a series of complexes. Salt stress was modeled by an artificial uptake of salt 

uncoupled to any transporter so that higher uptakes did not falsely trigger importer 

expression in the model. 

Modeling and validating amylase secretion rates. Random sampling of the solution 

space was performed from 90% to 100% of the optimal growth rate at the simulation 

conditions to generate a robust distribution of biologically relevant fluxes 8,9. Validation 

of secretion rates was performed in data collected from two previously reported 

experimental datasets, at a high 10 and low 11 growth rate. Amylase overexpression was 

performed by forcing it within the range from the base requirement at 0.17 h−1 until 

the requirement, the model would predict for 0.195 h−1. 

Results 

iJT964-ME improves gene essentiality accuracy by accounting for metabolism and 

gene expression 

To reconstruct iJT964-ME we adapted the available metabolic modeling packages 

COBRAme, COBRApy, and ECOLIme. COBRAme that were originally built for E. 

coli. The resulting B. subtilis-specific pipeline expanded the existing M-model iYO844 

with non-metabolic reactions, including translation, transcription, tRNA charging, and 

post-translational modification4. The final ME-model (iJT964-ME) contains 964 genes, 

6282 reactions, and 4208 metabolites (Fig. 1a). 

 

The addition of gene expression reactions into the network of B. subtilis resulted in a 

14% increase in genome coverage, with 32% of them being essential as predicted by 

iJT964-ME. The extensive manual curation performed for iJT964-ME significantly 

increased the prediction scores of gene essentiality. In some cases, prediction scores 

surpass those predicted for E. coli M- and ME-models. Interestingly, just a 14% 

increase in gene content allowed iJT964-ME to predict essentiality with increases of 

34% in the Matthews Correlation Coefficient (MCC) and 40% in Precision. 
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Fig. 1. Properties of iJT964-ME and gene essentiality prediction performance. a) Number of genes, metabolites, 

and reactions included in the model.  

Predicting metabolic and proteomic shifts of B. subtilis under stress 

Strategies adopted by living organisms to overcome stress are widely studied but not 

fully understood. In this section, we studied the predictive capability of iJT964-ME on 

salt and ethanol stress. Previous reports highlighted a group of significantly co-

regulated genes associated with an outstanding upregulation of tryptophan synthesis 

under ethanol stress (4% v/v)12. We used these findings to assess the capability of 

iJT964-ME of identifying metabolic shifts of B. subtilis under ethanol stress.  

First, we modeled ethanol stress by constraining experimentally observed uptake 

ethanol rates in the model. Our simulations show that the higher tryptophan demand 

can be caused solely by an increase in the demand for ethanol processing and acetate 

secretion enzymes. According to the resulting flux distributions (Fig. 2a), ethanol was 

converted to acetate through alcohol dehydrogenase (adhA) and aldehyde 

dehydrogenase (aldX), which was then secreted through a sodium-dependent acetate 

symporter (ywcA). The translation of ywcA caused approximately 65% of the total 

increment in tryptophan synthesis. 

Second, we focused on the understanding of possible metabolic mechanisms to 

overcome osmotic stress. We used transcriptomics data of B. subtilis growing under salt 

stress13 to evaluate the predicted flux distributions at the genome-scale. In accordance 

with this data, sodium uptake was modeled with no further expression of sodium 

importers. Interestingly, the regulation of 60% of differentially expressed genes was 

accurately captured by iJT964-ME. The model accurately captures the response of 

genes associated with main metabolic pathways, such as amino acid synthesis, 

ribosome formation, and nucleotide synthesis. These pathways are accurately captured 

since their activity is related to the organism's core metabolic response to stress. 

Furthermore, our model accurately predicts the arg operon's decrease when the excess 

sodium enters the cell. 
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Fig. 2. Response of B. subtilis to stress. a Hypothesis for the cause of upregulation as predicted by simulations.  

Optimization of protein secretion and identification of critical pathways 

First, we tested whether the new features of iJT964-ME allowed it to capture amylase 

secretion shifts at two different growth conditions. While under low growth, the model 

slightly overestimates the amylase secretion rate, while iJT964-ME predicts secretion 

rates within the reported experimental ranges at a high growth rate (Fig. 3a). We then 

performed a Principal Component Analysis (PCA) on the simulated data to identify the 

underlying mechanism. Since both conditions occur at two very different metabolic 

activities, it is expected that the difference in the fluxes of biomass precursor synthesis, 

organic carbon assimilation, and energy production describes the most considerable 

portion of the variance. 

 

We tested what groups of reactions would significantly drive the overexpression of 

amyE by fixing the growth rate at the lowest of the high growth conditions and forcing 

amyE overproduction until reaching the highest secretion rate. The two largest 

components described a strikingly higher portion of the variance (69%). Both 

components mostly consist of amino acid synthesis reactions. PC1 is described by 

valine, leucine, isoleucine, alanine, aspartate, arginine, and proline. On the other hand, 

PC2 consists of glutamate, glycine, serine, tyrosine, tryptophan, and phenylalanine. 

Interestingly, the weight of these does not directly correlate with the composition of the 

protein. This indicates that, although their composition in the protein is not nearly as 

high as alanine, their biosynthetic pathways might pose a bottleneck to target in the 

overexpression and industrial production of amylase. 
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Fig. 3. Prediction of amylase secretion. a Prediction of amylase secretion rate at two different growth rates.  

Conclusion 

 

The iJT964-ME model represents a significant advancement in the metabolic modeling 

of B.subtilis. Its broad scope and ability to capture expression changes have improved 

gene essentiality predictions, shed light on recent hypotheses relating amino acid 

metabolism and stress, and explored the capacity to secrete industrially relevant 

proteins. This model can serve as the basis for unraveling further questions about 

metabolism and has the potential to be the foundation on which to optimize 

heterologous protein expression in this important model organism and cell factory. 
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