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Background 

 

Nitrogen fixation is an important metabolic process carried out by different 

microorganisms, which converts molecular nitrogen into inorganic nitrogenous 

compounds such as ammonia (NH3) (Gyurján et al., 1995). These nitrogenous 

compounds play important roles for biogeochemical cycles on earth and for the 

synthesis of essential biomolecules at industrial level. Azotobacter vinelandii is a well-

known gram-negative soil bacterium capable of converting atmospheric nitrogen gas 

(N2) into soluble ammonia (NH3) as well as into other important nitrogenous soluble 

compounds. A. vinelandii can also produce the biopolymers alginate and 

polyhydroxybutyrate (PHB) depending on nutritional requirements. Alginate is 

biodegradable exopolysaccharide (Remminghorst & Rehm, 2006) produced to reduce 

internal oxygen concentration necessary to fix nitrogen. PHB is synthetized by this 

microorganism under high carbon/nitrogen ratios as a carbon and energy reserve in the 

form of cysts  (Zúñiga et al., 2011). Despite this metabolic versatility to use different 

carbon and nitrogen sources, several of the internal metabolic processes regarding 

carbon and nitrogen partitioning remain unknown. To comprehend the metabolic 

capabilities of Azotobacter vinelandii DJ we used a systems biology approach, which 

offers tools to predict the organism behavior based on mathematical representations of 

biological data (Campos et al., 2020). We developed the metabolic model (M-model) 

of Azotobacter vinelandii DJ to contextualize metabolic processes associated with 

nitrogen fixation, ammonium assimilation, and production of organic nitrogen on 

genome-scale. Our model was successfully validated using high-throughput phenotypic 

data and physiological data. 

 

Methods 

The draft model of A. vinelandii DJ was generated using The COBRA (Heirendt et al., 

2019) and The RAVEN (Agren et al., 2013) Toolboxes. The proteome sequence was 

obtained from PATRIC database (Genome ID: 322710.5) and was used as input 

sequence to reconstruct the draft model based on protein homology. We selected five 
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reference models as templates after alignment of the complete genome sequences 

of A. vinelandii DJ with all bacteria with available models in the BiGG Database (King 

et al., 2016). Model refinement included two major steps: manual curation/review of 

the GPR associations and gap-filling by adding new metabolic reactions in the model. 

In the first step of manual curation, we determined sequence similarity 

among A. vinelandii DJ proteins and the exogenous proteins in the GPRs to 

identify A. vinelandii (AVIN) genes closely related to the exogenous proteins. As 

second step, Gap-filling analysis was performed to identify the metabolites 

disconnected and the reactions missing in the model. gap-filling was used to connect 

pathways through the data retrieved. A second stage of gap-filling was accomplished to 

connect the metabolites from the medium conditions using literature 

information  (Wong and Maier, 1985) and experimental data generated in the present 

study. The experimental data were obtained through Biolog plates, a total of 190 carbon 

sources and 95 nitrogen compounds were used to determine the metabolic capabilities 

of A. vinelandii to growth in different conditions. We performed in-silico GPR 

simulations to verify if the GPR associations are correctly assigned using the COBRA 

Toolbox algorithms. Next, we performed Mass Balance simulations on the model to 

check for unbalanced reactions added during the model refinement.  

 

Results 

Model properties 

The initial draft model contained 2,432 metabolic reactions and 1,918 metabolites 

divided into three different compartments. The final Azotobacter vinelandii DJ 

metabolic model (iDT1278) consists of 2,003 metabolites, 2,469 reactions and 

1,278.  Specific metabolic capabilities of A. vinelandii DJ such as nitrogen fixation, 

PHB and alginate production represent around 3% of the metabolic reactions.  iDT1278 

includes a BOF was determined from the first reaction to predict the alginate production 

since A. vinelandii DJ (Noar et al., 2015). iDT1278 represents, to our knowledge, the 

most comprehensive M-model of the diazotroph A. vinelandii available to date. 

 

iDT1278 predicts accurately phenotypic experimental data 

 

The model was validated under a wide range of different growth conditions 

(diazotrophic and non-diazotrophic growth), using high-throughput phenotypic data as 

well as literature information. Initially, iDT1278 was tested under six different 

experimental conditions, specifically, carbohydrates under diazotrophic and non-

diazotrophic conditions. The M-model precisely predicted the growth rates for all the 

carbon sources using ammonium or molecular nitrogen as nitrogen sources. 

Subsequently, FBA (Orth et al., 2010) was performed for a group of 38 carbon sources 

in diazotrophic and H2-consuming conditions (Wong & Maier, 1985). Statistical results 

show for the subset of 38 carbon sources an accuracy of 95%, with 20 true positive 

predictions (100% positive predicted) and 16 true negative predicted results (89% 

negative predicted). Additional experimental validation was performed using Biolog 

plates for a set of carbon (PM1 and PM2) and nitrogen (PM3) sources to determine the 

https://www.sciencedirect.com/science/article/pii/S2214030120300043#bib53
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growth rate values of A. vinelandii DJ. Out of 190 carbon sources from the Biolog 

plates, 123 compounds were identified in the model; the simulations were performed 

under two specific conditions: diazotrophic and non-diazotrophic simulation 

conditions. The same procedure used in PM1 and PM2 experiments was followed to 

estimate the growth rates with 75 different nitrogen sources. For this case, simulations 

were performed using pyruvate as the carbon source. Table. 1 shows the complete 

analysis of the experimental and predicted data for all carbon and nitrogen sources; 

statistical parameters (accuracy, sensitivity, specificity, positive predicted, negative 

predicted and Matthews correlation coefficient) were calculated for non-diazotrophic 

conditions.  

 

 

Ultimately, biopolymers production (alginate and PHB) was validated through 

experimental data retrieved from the literature. We evaluated the model accuracy to 

growth and alginate production using four carbon sources under diazotrophic and non-

diazotrophic conditions. Simulations were confirmed to accurately predict (true 

positive predictions) alginate production rates with three carbon sources (glucose, 

mannitol, and sucrose). PHB production was also validated using metabolic modeling. 

Simulated flux distributions about PHB production were validated using fluxomic data 

retrieved from Wu et al. (2019). The metabolic fluxes of the reactions involved in the 

PHB synthesis and related pathways (glycolysis, pentose phosphate pathway, the 

Entner-Deundoroff pathway, and the TCA cycle) were calculated through FBA for 

diazotrophic and non-diazotrophic conditions. The simulation results were compared 

with the experimental measured fluxes (Wu et al., 2019) and the percent error was 

estimated by reaction.  A general agreement in the reaction fluxes was observed under 

both nitrogen (N2 and NH4) conditions. A total of 16 out of 19 reaction flux estimations 

presented a global accuracy above 90% for diazotrophic and non-diazotrophic 

conditions. 

 

Table 1. Statistics of the predictions under carbon and nitrogen sources: true positive 

(TP), true negative (TN), false positive (FP), false negative, and MCC. Statistical 

analysis of the estimations for 38 carbon sources under nitrogen fixation and 

H2 consumption conditions (third column).  

 

 
 

https://www.sciencedirect.com/science/article/pii/S2214030120300043#fig3
https://www.sciencedirect.com/science/article/pii/S2214030120300043#bib54
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Conclusion 

Here we have created the most comprehensive genome-scale metabolic model 

for A. vinelandii DJ (iDT1278) deploying in great detail nitrogen assimilation, nitrogen 

fixation, as well as on alginate and PHB production. The model consists of 1,278 genes 

involved in 2,469 reactions. iDT1278 predicted accurately the growth ratio and 

production values of alginate and PHB production under diazotrophic and non-

diazotrophic conditions. To our knowledge, this is the first M-model at genome-scale 

capable to simulate several carbon and nitrogen conditions (close to 250 conditions) 

with a high precision for growth values and polymer production (PHB and alginate) 

even when comparing internal metabolic fluxes.  
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