Designing an irreversible metabolic switch for scalable induction of microbial chemical production

Ahmad A. Mannan¹ and Declan G. Bates¹

¹ Warwick Integrative Synthetic Biology Centre, School of Engineering, University of Warwick, UK

PlsB

Published (click here to access) Mannan A. A., Bates, D. G. (2021) Nat. Commun. 12, 3419

Biotechnology and Biological Sciences Research Council

grant: BB/M017982/1

Motivation

- Inducible genetic circuits can be used to switch cell metabolism from growth to chemical synthesis, overcoming their inherent trade-off
- But, use of costly inducers or need for constant addition, to counter their consumption, limits scalability of inducible chemical production.

Question

- Can we engineer a genetic circuit to switch on and retain production, after temp. induction with a cheap natural nutrient, like oleic acid?

Oleic acid-inducible dynamic control

rest of metabolism

Endogenous Dynamic control application system oleic acid 👝 sugar FadD

Mathematical model

Protein expression

Reaction kinetics and metabolite dynamics

$$r_{u} = \frac{k_{cat,D} \cdot OA}{K_{m,D} + OA} \cdot D \qquad \qquad \frac{dA}{dt} = r_{u} - r_{c} - r_{c} - \frac{k_{cat,B} \cdot A}{K_{m,B} + A} \cdot B \qquad \qquad \frac{dC}{dt} = r_{seq} - \lambda C$$

$$r_{seq} = k_{f}A^{2}R - k_{r}C \qquad \qquad \frac{dC}{dt} = r_{seq} - \lambda C$$

Growth dynamics

 $\lambda(E_g) = \lambda_{\max} \cdot (E_g s_T - s_T + 1)$ $n_{\max_{i} s_{\tau}} = 0$

Engineering a bistable metabolic switch

- We can tune the native circuitry to achieve a bistable switch.
- Switch reduces growth, but this reinforces bistable behaviour.

- OA is consumed, so need to constantly add it to retain production.
- Changing FadR NAR to PAR significantly cuts total inducer used:
 - FadR is not stored and instead diluted away,
 - \star this slows reversion after OA depletes,
 - and reduces OA additions to retain production.

Designing and optimising an irreversible switch

Irreversible OA-inducible switch

Production

VS

Growth

E.coli DH1∆fadE

- PAR dilutes away FadR during induction.
- Augmenting positive feedback loop stops further FadR expr.
- This irreversibly locks cell at production phenotype.

Growth phenotype

 $-2 \cdot r_{\rm seq} - \lambda A$

Production phenotypes

Problem — Intermittent OA addition is costly and limits scalability.

- Key principles to engineering irreversible genetic switch:

(1) strong promoter strengths of FadR and TetR,

(2) similar but weak inhibitions of each TF on other's expression.

Time (h) 10^{1} Scaling. rate 79.43 10⁰ exp. 0.79 10 FadR (µM) 0.008 Rev. 10^{-4} 0.008 0.79 79.43 *tetR* exp rate 10⁻³ ′ tetR 10^{-4} 79.43 FadR inh of 0.79 10⁻⁵ 0.008 10⁻³ 10^{-4} 10⁻² 0.008 0.79 79.43 Oleic acid (µM) TetR inh of *fadR*

Implications and impacts

- Wide applicability - many hosts - many chems

		Inducer	Inducer cost
	Lacl	IPTG	£ 1055
	Betl	Choline	£ 180
	FadR	Fatty oleic acid	£ 211
	GntR	D-gluconate	£ 22
	TreR	Trehalose-6-pi	£ 237
	TyrR	L-tyrosine	£ 39
	* cost for 25g (≥99%) from Merck, SigmaAldrich.		

Take-home messages

- Oleic acid inducible genetic switch can be constructed to irreversibly activate synthesis.
- General design principles switch can be made for other nutrient-inducible TFs.
- Should be widely applicable for use in many host cells & synthesis of any product.
- Temporal addition of cheap natural nutrient cuts costs — making induction of microbial chemical production more scalable.

Key references

Hartline C.J., et al. (2020) Metabolite sequestration enables rapid recovery from fatty acid depletion in E. coli, *mBio*, 11(2):e03112-19

40

fadD leakiness

40

50

- Klamt S., et al. (2018) When do two-stage processes outperform one-stage processes?, Biotechnol. J., 13(2), 1700539
- Usui Y., et al. (2012) Investigating the effects of perturbations to pgi and eno gene expression on central carbon metabolism in *Escherichia coli* using 13C metabolic flux analysis, Microbial Cell Factories, 11(1), 87

Acknowledgements

Funding: Warwick Integrative Synthetic Biology Centre, BBSRC grant BB/M017982/1.

Author Contact Info please click icons

ResearchGate Profile

@AhmadMannan17