The 2nd International BioDesign **Research** Conference

December 6th - 17th, 2021, Virtual

CENTRE OF

BOLOGICAL

ENGINEERING

Production of a lactose-based prebiotic mixture by engineered Saccharomyces cerevisiae

Beatriz B. Cardoso, Sara C. Silvério, Joana L. Rodrigues, Lígia R. Rodrigues

Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal

Introduction

Prebiotics are defined as 'substrates that are utilized by host microorganisms conferring a health benefit' and they have been incorporated in a wide variety of food products ^[1]. One of the most well-recognized prebiotics is lactulose. Recently, the production of lactulose through lactose isomerization catalyzed by cellobiose 2-epimerase (CE) was reported ^[2]. This strategy is gaining attention as a preferable methodology for industrial application due to its notable yields. Using lactose as a single substrate, CE can, under optimized conditions, lead to the formation of lactulose and epilactose ^[2]. Epilactose is a rare functional sugar that was shown to promote the proliferation of beneficial microorganisms, revealing its potential prebiotic effect ^[3]. Saccharomyces cerevisiae, one of the most well-characterized microorganisms, is widely used for the heterologous production of several enzymes, also due to the diverse genetic manipulation tools that are currently available. Here, we propose a new and promising S. cerevisiae biocatalyst. Taking advantage of its GRAS status and using lactose as a single substrate, we believe that it can be a more economic and attractive approach for the synthesis of lactulose and epilactose.

Aim: Production of prebiotics using a *S. cerevisiae* biocatalyst

Experimental

Results

Selection of the Most Promising *S. cerevisiae* Strain

Characterization of Cellobiose 2-epimerase

100-

plasmids

C corovision

strains	pSP-GM1_CsCE	p426TEF_CsCE	p426GAP_CsCE
BY4741	24.43 ± 1.34 ^{a,c}	22.66 ± 1.39 ^a	34.47 ± 0.30^{b}
CEN.PK2-1C	26.63 ± 1.22 ^c	27.42 ± 0.98^{c}	27.26 ± 2.34 ^c

Production of prebiotics

B.B.C. acknowledges her doctoral grant (SFRH/BD/132324/2017) from the Portuguese Foundation of Science and Technology (FCT). This study was supported by FCT under the scope of the strategic funding of the UID/BIO/ 04469/2020 unit and Project LIGNOZYMES (POCI-01- 0145-FEDER-029773).

