gcFront: a tool for determining a Pareto front of growth-coupled cell factory designs

Laurence Legon 1,2, Christophe Corre 2, Declan G. Bates 1 and Ahmad A. Mannan 1

bioRxiv THE PREPRINT SERVER FOR BIOLOGY Preprint (click here to access)

Legon, L., Corre, C., Bates, D. G.

Mannan, A. A (2021) bioRxiv,

doi:10.1101/2021.10.12.464108

grant BB/M017982/1 grant EP/L016494/1

typically at

a trade-off

[3] Fast growth

Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, UK | 1 School of Engineering; 2 School of Life Sciences

Three key performance objectives of cell factories **Motivation** [2] *High* [1] Strong growth-coupled synthesis — Genome-scale models are used to predict KOs that will synthesis reroute cell metabolism for chemical overproduction. Strongly growth-coupled $c_s^{ m gc} = { m min} \left(ight.$ flux growth-coupled Coupling $c_s^{\rm nc} = \frac{\lambda_{\rm max} - \max(\lambda(r_p = \delta))}{c_s^{\rm nc}}$ A promising strategy to create cell factories with robust strength (c_c) $\lambda_{\max} - \max(\lambda(r_p = 0))$ Weakly chemical synthesis is do KOs that make synthesis growth-coupled **obligatory at high growth** — growth-coupling. $2 \le c_s \le 1$

flux $(r_{
ho})$

 $\mathbf{O} = r_p(\lambda_{\max})$

Determining cell factory designs A multiobjective optimization problem

Growth rate (λ)

 $1 < C_s < 0$

 $\max(J_1,J_2,J_3),$ $J_1 = \text{growth rate}, \lambda; J_2 = \text{synthesis flux}, r_p; J_3 = \text{coupling strength}, c_s$ subject to $S \cdot \underline{r} = \underline{0}$, and $\underline{k} \circ \underline{lb} \leq \underline{r} \leq \underline{k} \circ \underline{ub}$, where \underline{k} is vector defining rxn KOs, $k_i \in \{0, 1\}$

gcFront - the workflow

growth-coupled synthesis.

Required **prerequisites**

Problem

MATLAB, Global Optimization

— This enable us to **evolve and select** KO mutants on growth,

to attain evolutionarily robust, high synthesis strains.

— But **designs are rare** in the immense search space

— We developed gcFront - a user-friendly tool that

efficiently determines many KO sets for

— making it **difficult and slow to find**.

COBRA Toolbox, LP solver: glpk or Gurobi

Human-required input

Compulsory

- Name curated and constrained COBRA-compatible GSM (i.e. GSMs from BiGG database) of host cell with product synthesis.

- Name target metabolite

Optional for GSM model

- LP solver (e.g. glpk or Gurobi)
- KO genes or reactions (rxns)
- List of rxns or genes to exclude from KOs
- Max number of KOs
- Minimum growth rate

Optional for genetic algorithm

- Population size
- Mutation rate
- Define termination condition: max number of generations or time limit

gcFront toolbox & computational processing

Pre-processing

- Model reduction delete dead rxns, lump unbranched p/w
- Generate list of candidate KO excluding those defined in options & where single KOs do not allow growth or synthesis
- Tilt objective vector (to ensure minimum synthesis flux is found)

Solving multiobjective optimisation problem

Post-processing

- Remove redundant KOs from Pareto optimal designs
- Calculate Euclidean distance of each design to ideal point - Save designs and metrics

Key references

von Kamp, A. and Klamt, S. (2017) Growth-coupled overproduction is feasible for almost all metabolites in five major production organisms. Nat. Commun., 8, 15956.

Tokuyama, K. et al. (2018) Application of adaptive laboratory evolution to overcome a flux limitation in an *E. coli* production strain. Biotechnol. Bioeng., 115, 1542-1551.

Heirendt, L. et al. (2019) Creation and analysis of biochemical constraintbased models using COBRA Toolbox v.3.0. Nat. Protoc., 14, 639-702.

Acknowledgements

We would like to thank UK funding — BBSRC (grant BB/M017982/1) and EPSRC (grant EP/L016494/1).

How to run gcFront

1 — Download genome-scale model (e.g. from BiGG database)

2— **Import** and **modify model** using COBRA toolbox and ...

Increased lower bound

of r_n from 0 to δ

 $\max(\lambda(r_p = \delta))$

... run "gcFront" in MATLAB command window

 $C_{S} \leq 0$

Growth rate (λ)

E.g. performance — finds many designs & faster

Impact - gcFront in the creation pipeline

Design - gcFront suggests KO sets for growth-coupled synthesis

Build and evolve - implement KOs in lab and adopt adaptive lab evolution to converge to predicted optimal perf. (e.g. Tokuyama, et al., 2018)

Test - measure growth and synthesis to assess closeness to optimal predicted.

Take-home messages

— We want to **create cell factories** with **fast** growth, high synthesis and strong coupling.

— gcFront solve this multiobjective optimization problem, finds many competing designs, in reasonable time - rather than 1 design after hrs.

— gcFront is user friendly, should be widely applicable, and freely available at GitHub link:

https://github.com/ILegon/gcFront/tree/V1.0.

Growth rate (1/h)

