gcFront: a tool for determining a Pareto front
of growth-coupled cell factory designs
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Motivation

— Genome-scale models are used to predict KOs that will

reroute cell metabolism for chemical overproduction.

— A promising strategy to create cell factories with robust

chemical synthesis is do KOs that make synthesis
obligatory at high growth — growth-coupling.

— This enable us to evolve and select KO mutants on growth,
to attain evolutionarily robust, high synthesis strains.

Problem

— But designs are rare in the immense search space
— making it difficult and slow to find.

— We developed gckront - a user-friendly tool that
efficiently determines many KO sets for
growth-coupled synthesis.
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Determining cell factory designs
— A multiobjective optimization problem
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J1 = growth rate, A; Jo = synthesis flux, r,; J3 = coupling strength, c,

subject to

where k is vector defining rxn KOs, k; € {0, 1}

‘ gckront - the workflow

How to run gclront

' Required prerequisites

Toolbox or Gurobi

COBRA Toolbox,

MATLAB,
‘ Global Optimization 5) . LP solver: glpk

p
Human-required input

Compulsory

- Name curated and constrained COBRA-compatible GSM (i.e.

GSMs from BiGG database) of host cell with product synthesis.
- Name target metabolite

Optional for GSM model

LP solver (e.g. glpk or Gurobi)

KO genes or reactions (rxns)

List of rxns or genes to exclude from KOs
Max number of KOs

Minimum growth rate

Optional for genetic algorithm

- Population size
- Mutation rate

- Define termination condition: max number of generations
or time limit

&

1— Download genome-scale model
(e.g. from BiGG database)

Iz] BiGG Model e_coli_core X +

< & A Not Secure | bigg.ucsd.edu/models/e_coli_core

Home Advanced Search Data Access Memote Validator (2

SBML 7 : e_coli_core.xml (.xml.gz, compressed)
JSON 7 : e_coli_core.json (,json.gz, compressed)
MAT ? : e_coli_core.mat (.mat.gz, compressed)

Downloads last updated Oct 31, 2019 | BIGG License

3— Define model, target product, and options, and ...

O gcFront

Model file name/address (leave blank to select
manually)

e _coli_core.mat

Target reaction/metabolite

succinate

OK Cancel

Download COBRA model from the BIGG Database:

2— Import and modify model using
COBRA toolbox and ...

Command Window

% setting glucose supply to 10 mmol/gDW/h in E. coll core
% by changing lower bound of exchange reaction
model=readCbModel('e_coli _core.mat');
model=changeRxnBounds(model, "EX_glc_ D_e", =10, 'l');
save('e _coli _core.mat', 'model');

Jfx >> gcFront

... run “gcFront” in MATLAB command window

mutationrate

00 gcFront options O @ gcFront options
maxknockouts v { maxknockouts { v \
blomassrxn Maximum number of knockouts that a design may have
deletegenes

dontkoess

fitnesslimit

genlimit 5

ignorelistgenes

ignorelistrxns

maxknockouts

mingrowth

minprod

| Start algorithm )

gcFront toolbox & computational processing
Pre-processing

- Model reduction - delete dead rxns, lump unbranched p/w

- Generate list of candidate KO - excluding those defined in
options & where single KOs do not allow growth or synthesis

- Tilt objective vector (to ensure minimum synthesis flux is found)

Solving multiobjective optimisation problem

Generate population of KOs

No based on mutation rate
maximise Calculate growth,
Terminate? <> s}-‘/’;‘;lz'g;”is synthesis flux and
coupling coupling strength
Yes Plot Pareto

optimal designs

"

4— Design output and exploration
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... start solving to find designs

Output designs and performance measures (optimized objectives) to Excel table

ReactionDeletions NoOfDels GrowthRate ProductFlux CouplingStrength DistFromIdeal

"PFL PGI EX_co2_e/C02t"

"PFL PGI EX_co2_e/C02t GLUDy"

"PFL D_LACt2/LDH_D/EX_lac_ D_e ETOHt2r/ALCD2x/EX_etoh_e THD2 EX_o2_e/02t/CYTBD"
"ACALD D_LACt2/LDH_D/EX_lac__D_e THD2 EX_o2_e/02t/CYTBD"

"PFL D_LACt2/LDH_D/EX_lac__D_e ETOHt2r/ALCD2x/EX_etoh_e EX_o2_e/02t/CYTBD"

0.14332 10.406 1.3336 8.9711
8.13686 10.388 1.3342 0.97779
0.017631 10.825 1.8369 1.057
0.090648 9.9108 1.4837 1.0129
0.020154 9.8848 1.8488 1.0571

& b, obsow

Synthesis flux (mmol/gDW/h)

— Deletions: PGI EX_co2_e/C02t GLUDy

T R s + e T O st Metabolite MinFlux MaxFlux Reaction ReactionFormula
"H4" 32.324 32.324 "EX_h_e' 'h_e <=>"
"H20 H20" 10.994 10.994 '"EX_h20_e' 'h2o_e <=>"'
"Succinate" 9.626 9.6261 "EX_succ_e' 'succ_e -> '
"Formate" 5.1059 5.106 'EX_for_e' "for_ e -> '
"Acetate" 4.1995 4.1997 'EX_ac_e' 'ac_ce -> '
"Pyruvate" 0 0.00010937 'EX_pyr_e' 'pyr_e -> '
"D-Lactate" %) 4,1015e-05 'EX_lac__D_e' 'lac_ D e ->'"

— "Acetaldehyde" 0 3.6458e-05 '"EX_acald_e' 'acald_e -> '

Growth rate (1/h) "2-0xoglutarate" @  2.9829e-85  'EX_akg_e' ‘akg_e -> '

"Ethanol" 4} 2.524e-05 'EX_etoh_e’ 'etoh_ e ->'

> Also output other metabolites predicted to be secreted

| -.g. performance — finds many designs & faster | Impact - gckront in the creation

-

Post-processing

- Remove redundant KOs from Pareto optimal designs
- Calculate Euclidean distance of each design to ideal point

- Save designs and metrics
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— gcFront solve this multiobjective optimization
problem, finds many competing designs, in
reasonable time - rather than 1 design after hrs.

— gcFront is user friendly, should be widely
applicable, and freely available at GitHub link:
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