Form of nitrogen input dominates N effects on root growth and soil

aggregation: a meta-analysis

Tongshuo Bai¹, Peng Wang¹, Chenglong Ye^{1*}, Shuijin Hu^{1, 2*}

¹Ecosystem Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China

²Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA

Background Anthropogenic nitrogen (N) input has overtaken natural N fixation as the largest reactive N source and is predicted to stimulate ecosystem carbon (C) sequestration. Most studies of N effects on soil C balance have focused on biological processes that control C input (plant production) and C output (microbial decomposition), but few have examined the general patterns of N effects on the physiochemical processes such as soil aggregation that regulate soil organic C persistence.

Methods We synthesized results from 87 publications that examined effects of experimental N input on soil aggregation, a key process controlling soil C persistence, and its related processes.

Results Globally, N input significantly enhanced plant shoot and root biomass, and the formation of soil macroaggregates and their size (measured as mean weight diameter, MWD; P < 0.05). Surprisingly, N-enhancement of root biomass and soil aggregation primarily stemmed from urea applications. Although urea input reduced microaggregates, it increased macroaggregates (+6.9%) and MWD, likely due to enmeshment by urea-induced root growth (+20.5%). In contrast, other forms of N input (combined NH₄⁺, NO₃⁻ and NH₄NO₃) did not significantly affect root biomass, microaggregates or macroaggregates, but reduced microbial biomass C. Further, N-promotion of soil aggregation occurred mainly in croplands under low to moderate N input (< 200 kg N ha⁻¹ yr⁻¹).

Conclusion These results indicate that the form of N fertilizer exerts a primary control over N effects on plants, microbes, and soil aggregation. Our findings suggest that combination of urea fertilizers and reduced perturbations (e.g., reduced-tillage) may be key to enhance soil aggregation and organic C retention and persistence in vast agroecosystems.

Funding This work was partially supported by National Key R&D Program of China (no. 2017YFC0503902).

References

- Riggs, C. E., Hobbie, S. E., Bach, E. M., Hofmockel, K. S., & Kazanski, C. E. (2015). Nitrogen addition changes grassland soil organic matter decomposition. *Biogeochemistry*, *125*, 203–219.
- Wilson, G. W. T., Rice, C. W., Rillig, M. C., Springer, A., & Hartnett, D. C. (2009). Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. *Ecology Letters*, 12, 452–461.
- Xu, C. H., Xu, X., Ju, C. H., Chen, H. Y. H., Wilsey, B. J., Luo, Y. Q., & Fan, W. (2020). Long-term, amplified responses of soil organic carbon to nitrogen addition worldwide. *Global Change Biology*, 27, 1170–1180.